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9.1 Introduction

One of the most fundamental marketing activities is in market segmentation. As
companies cannot connect with all their potential customers, they have to divide

markets into groups (segments) of consumers, customers, or clients with similar

needs and wants. Firms can then target each of these segments by positioning

themselves in a unique segment (such as Ferrari in the high-end sports car market).

While market researchers often form market segments based on practical grounds,

industry practice and wisdom, cluster analysis allows segments to be formed that

are based on data that are less dependent on subjectivity.

The segmentation of customers is a standard application of cluster analysis, but it

can also be used in different contexts such as evaluating typical supermarket

shopping paths (Larson et al. 2005) or deriving employers’ branding strategies

(Moroko and Uncles 2009).

9.2 Understanding Cluster Analysis

Cluster analysis is a convenient method for identifying homogenous groups of

objects called clusters. Objects (or cases, observations) in a specific cluster share

many characteristics, but are very dissimilar to objects not belonging to that cluster.

Let’s try to gain a basic understanding of the cluster analysis procedure by

looking at a simple example. Imagine that you are interested in segmenting your

customer base in order to better target them through, for example, pricing strategies.

The first step is to decide on the characteristics that you will use to segment your

customers. In other words, you have to decide which clustering variables will be
included in the analysis. For example, you may want to segment a market based on

customers’ price consciousness (x) and brand loyalty (y). These two variables can

be measured on a 7-point scale with higher values denoting a higher degree of price

consciousness and brand loyalty. The values of seven respondents are shown in

Table 9.1 and the scatter plot in Fig. 9.1.

The objective of cluster analysis is to identify groups of objects (in this case,

customers) that are very similar with regard to their price consciousness and

brand loyalty and assign them into clusters. After having decided on the clustering

variables (brand loyalty and price consciousness), we need to decide on the

clustering procedure to form our groups of objects. This step is crucial for the

analysis, as different procedures require different decisions prior to analysis. There

is an abundance of different approaches and little guidance on which one to use in

Table 9.1 Data

Customer A B C D E F G

x 3 6 5 3 6 4 1

y 7 7 6 5 5 3 2
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practice. We are going to discuss the most popular approaches in market research,

as they can be easily computed using SPSS. These approaches are the following:

– Hierarchical methods,
– Partitioning methods (more precisely, k-means), and
– Two-step clustering.

Each of these procedures follows a different approach to grouping the most

similar objects into clusters. Specifically, whereas an object in a certain cluster

should be as similar as possible to all the other objects in the same cluster, it should

likewise be as distinct as possible from objects in different clusters.

But how do we measure similarity? Most methods calculate measures of (dis)

similarity by estimating the distance between pairs of objects. Objects with smaller

distances between one another are more similar, whereas objects with larger distances

are more dissimilar.

An important problem in the application of cluster analysis is the decision

regarding how many clusters should be derived from the data. This question is

explored in the next step of the analysis. Sometimes, we already know the number

of segments that have to be derived from the data. For example, if we were asked to

ascertain what characteristics distinguish frequent shoppers from infrequent ones,

we need to find two different clusters. However, we do not usually know the exact

number of clusters and then we face a trade-off. On the one hand, you want as few

clusters as possible to make clusters easy to understand and actionable. On the other

hand, having many clusters allows you to identify more segments and more subtle

differences between segments. In an extreme case, you can address each individual

separately (called micromarketing) to meet consumers’ specific needs in the best

possible way.

However, the costs associated with such a strategy may be prohibitively high in

many business contexts. Thus, we have to ensure that the segments are large enough
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to make marketing programs profitable. As a result, we create some within-cluster

heterogeneity, which makes targeted marketing programs less effective.

In the final step, we need to interpret the solution by defining and labeling the

obtained clusters. This can be done by examining the clustering variables’ mean

values or by identifying explanatory variables to profile the clusters. Ultimately,

managers should be able to identify customers in each segment on the basis of

easily measurable variables. This final step also requires us to assess the clustering

solution’s stability and validity. Figure 9.2 illustrates the steps associated with a

cluster analysis; we will discuss these steps in more detail in the following sections.

9.3 Conducting a Cluster Analysis

9.3.1 Decide on the Clustering Variables

At the beginning of the clustering process, we have to select appropriate variables

for clustering. Even though this choice is of utmost importance, it is rarely treated

as such and, instead, a mixture of intuition and data availability guide most analyses

in marketing practice. However, faulty assumptions may lead to improper market

segments and, consequently, to deficient marketing strategies. Thus, great care should

be taken when selecting the clustering variables!

Micromarketing in Practice

In the PUMA Factory, customers can fully customize a pair of shoes in a

hands-on, tactile, and interactive shoe-making experience. This customiza-

tion by the customers allows PUMA to target each customer individually with

promotions or special offerings, allowing for a one-to-one interaction.
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There are several types of clustering variables and these can be classified as

follows:

– General vs. specific, and
– Observable vs. unobservable.

General clustering variables are independent of products, services or

circumstances whereas specific variables relate to both the customer and the

product, service and/or particular circumstance. Furthermore, observable clustering

variables can be measured directly while unobservable ones are inferred, for

example, through observation or respondents’ self-assessments. Table 9.2 provides

several types and examples of clustering variables.

Validate and interpret the clustering solution

Decide on the clustering variables

Select a clustering 
algorithm

Decide on the clustering procedure

Hierarchical methods Partitioning methods Two-step clustering

Select a measure of 
similarity or 
dissimilarity

Select a measure of 
similarity or 
dissimilarity

Decide on the number of clusters

Fig. 9.2 Steps in a cluster analysis

Table 9.2 Types and examples of clustering variables

General Specific

Observable – Cultural

– Demographic

– Geographic

– Socio-economic

– . . .

– Brand loyalty

– Store loyalty

– User status

– Usage frequency

– . . .

Unobservable – Lifestyle

– Personality

– Psychographics

– Values

– . . .

– Attitudes

– Intentions

– Perceptions

– Preferences

– . . .
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The types of variables used for cluster analysis provide different segments and,

thereby, influence segment-targeting strategies. Over the last decades, attention has

shifted from more traditional general clustering variables towards product-specific

unobservable variables. The latter generally provide better guidance for decisions

on marketing instruments’ effective specification. Generally, segments identified

by means of specific unobservable variables are more homogenous and their

consumers respond more consistent to marketing actions (see Wedel and Kamakura

2000). However, consumers in these segments are also frequently hard to identify

from variables that are easily measured, such as demographics. Conversely,

segments determined by means of observable variables usually stand out due to

their identifiability but often lack a unique response structure.1 Consequently,

researchers frequently combine different variables (e.g., multiple lifestyle

characteristics combined with demographic variables), benefiting from each one’s

strengths.

In some cases, the choice of clustering variables is apparent because of the task

at hand. For example, a managerial problem regarding corporate communications

will have a fairly well defined set of clustering variables, including contenders such

as awareness, attitudes, perceptions, and media habits. However, this is not always

the case and researchers have to choose from a set of candidate variables. But how

do we make this decision? To facilitate the choice of clustering variables, you

should consider the following guiding questions:

– Do the variables sufficiently differentiate the segments?

– Are the clustering variables highly correlated?

– Is the relation between sample size and number of clustering variables

reasonable?

– Are the data underlying the clustering variables of high quality?

Do the variables sufficiently differentiate the segments?
It is important to select those clustering variables that provide a clear-cut differen-

tiation between the segments regarding a specific managerial objective.2 More

precisely, criterion validity is of special interest; that is, the extent to which the

“independent” clustering variables are associated with one or more “dependent”

variables not included in the analysis. Such “dependent” variables typically relate

to some aspect of behavior, such as purchase intention or willingness-to-pay. Given

this relationship, there should be significant differences between the “dependent”

variable(s) across the clusters (e.g., consumers in one cluster exhibit a significantly

higher willingness-to-pay than those in other clusters). These associations may or

may not be causal, but it is essential that the clustering variables distinguish the

variable(s) of interest significantly.

1 See Wedel and Kamakura (2000).
2 Tonks (2009) provides a discussion of segment design and the choice of clustering variables in

consumer markets.
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Are the clustering variables highly correlated?
If there is strong correlation between the variables, they are not sufficiently unique

to identify distinct market segments. If highly correlated variables are used for

cluster analysis, specific aspects covered by these variables will be overrepresented

in the clustering solution. In this regard, absolute correlations above 0.90 are always

problematic. For example, if we were to add another variable called brand pre-
ference to our analysis, it would virtually cover the same aspect as brand loyalty.
Thus, the concept of being attached to a brand would be overrepresented in the

analysis because the clustering procedure does not differentiate between the clus-

tering variables in a conceptual sense. Researchers frequently handle such correla-

tion problems by applying cluster analysis to the observations’ factor scores derived

from a previously carried out factor analysis. However, this so called factor-cluster
segmentation approach is subject to several limitations which we discuss in

Box 9.1.

Box 9.1 Issues with factor-cluster segmentation

Dolnicar and Grün (2009) identify several problems of the factor-cluster

segmentation approach:

1. The data are pre-processed and the clusters are identified on the basis of

transformed values, not on the original information, which leads to differ-

ent results.

2. In factor analysis, the factor solution does not explain a certain amount of

variance; thus, information is discarded before segments have been

identified or constructed.

3. Eliminating variables with low loadings on all the extracted factors means

that, potentially, the most important pieces of information for the identifi-

cation of niche segments are discarded, making it impossible to ever

identify such groups.

4. The interpretations of clusters based on the original variables become

questionable given that the segments have been constructed using factor

scores.

Several studies have shown that the factor-cluster segmentation signifi-

cantly reduces the success of finding useable segments.3 Consequently, you

should rather reduce the number of items in the questionnaire’s pre-testing

phase, retaining a reasonable number of relevant, non-redundant questions

that you believe differentiate the segments well. However, if you have your

doubts about the data structure, factor-clustering segmentation may still be a

better option than discarding items that may conceptually be necessary.

3 See the studies by Arabie and Hubert (1994), Sheppard (1996), or Dolnicar and Grün (2009).
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Is the relation between sample size and number of clustering variables reasonable?
When choosing clustering variables, sample size is a point of concern. First and

foremost, this relates to issues of managerial relevance as segment sizes need to be

substantial to ensure that targeted marketing programs are profitable. From a

statistical perspective, every additional variable requires an over-proportional

increase in observations to ensure valid results. Unfortunately, there is no generally

accepted rule of thumb regarding minimum sample sizes or the relationship

between the objects and the number of clustering variables used. Formann (1984)

recommends a minimum sample size of 2m, where m equals the number of

clustering variables. This rule-of-thumb can only provide rough guidance; never-

theless, we should pay attention to the relationship between the sample size and the

number of clustering variables. It does not, for example, appear logical to cluster

ten objects using ten variables. Keep in mind that no matter how many variables are

used and no matter how small the sample size, cluster analysis will always render a

result!

Are the data underlying the clustering variables of high quality?
Ultimately, the choice of clustering variables always depends on contextual

influences such as data availability or resources to acquire additional data.

Market researchers often overlook the fact that the choice of clustering variables

is closely connected to data quality. Only those variables that ensure that high

quality data can be used should be included in the analysis (Dolnicar and

Lazarevski 2009). Data are of high quality if. . .
– . . . the questions asked have a strong theoretical basis,

– . . . are not contaminated by respondent fatigue or response styles, and

– . . . reflect the current market situation (i.e., they are recent).

The requirements of other functions in the organization often play a major role

in the choice of clustering variables. For example, sales may wish to have

segments that they can send the same salespeople to. Consequently, we have to

be aware that the choice of clustering variables should lead to segments

acceptable to the different functions in the organization.

9.3.2 Decide on the Clustering Procedure

By choosing a specific clustering procedure, we determine how clusters are to be

formed. This always involves optimizing some kind of criterion, such as

minimizing the within-cluster variance (i.e., the clustering variables’ overall vari-

ance of objects in a specific cluster), or maximizing the distance between the
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objects or clusters. The procedure could also address the question of how to

determine the (dis)similarity between objects in a newly formed cluster and the

remaining objects in the dataset.

There are many different clustering procedures and also many ways of

classifying these (e.g., overlapping versus non-overlapping, unimodal versus mul-

timodal, exhaustive versus non-exhaustive).4 A practical distinction is the differen-

tiation between hierarchical and partitioning methods (most notably the k-means
procedure), which we will discuss in the next sections. We also introduce two-step
clustering, which combines the principles of hierarchical and partitioning methods

and which has recently gained increasing attention from market research practice.

9.3.2.1 Hierarchical Methods
Understanding Hierarchical Clustering
Hierarchical clustering procedures are characterized by the tree-like structure

established in the course of the analysis. Most hierarchical techniques fall into a

category called agglomerative clustering. In this category, clusters are consecu-

tively formed from objects. Initially, this type of procedure starts with each object

representing an individual cluster. These clusters are then sequentially merged

according to their similarity. First, the two most similar clusters are merged to

form a new cluster at the bottom of the hierarchy. In the next step, another pair of

clusters is merged and linked to a higher level of the hierarchy, and so on. This

allows a hierarchy of clusters to be established from the bottom up. In Fig. 9.3 (left-

hand side), we show how agglomerative clustering assigns additional objects to

clusters step-by-step.

A cluster hierarchy can also be generated top-down. In this divisive clustering,
all objects are initially merged into a single cluster, which is then gradually split

up. Figure 9.3 illustrates this concept (right-hand side). As we can see, in both

agglomerative and divisive clustering, a cluster on a higher level of the hierarchy

always encompasses all clusters from a lower level. This means that if an object is

assigned to a certain cluster, there is no possibility of reassigning this object to

another cluster. This is an important distinction between these types of clustering

and partitioning methods such as k-means, which we will explore in the next

section.

Divisive procedures are quite rarely used in market research. We therefore

concentrate on the agglomerative clustering procedures. There are various types

of agglomerative procedures. However, before we discuss these, we need to define

how similarities or dissimilarities are measured between pairs of objects.

4 See Wedel and Kamakura (2000), Dolnicar (2003), and Kaufman and Rousseeuw (2005) for a

review of clustering techniques.
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Select a Measure of Similarity or Dissimilarity
Metric and Ordinal Variables

There are various measures to express (dis)similarity between pairs of objects.

A straightforward way to assess two objects’ proximity is by drawing a straight line

between them. For example, when we look at the scatter plot in Fig. 9.1, we can

easily see that the length of the line connecting observations B and C is much

shorter than the line connecting B and G. This type of distance is also referred to as

Euclidean distance (or straight-line distance) and is the most commonly used type

when it comes to analyzing ratio or interval-scaled variables.5 In our example, we

have ordinal variables, but market researchers usually treat ordinal variables as

metric data to calculate distance metrics by assuming that the scale steps are

equidistant (very much like in factor analysis, which we discussed in Chap. 8).

To use a hierarchical clustering procedure, we need to express these distances

mathematically. Using the data from Table 9.1, we can compute the Euclidean

distance between customer B and customer C (generally referred to as d(B,C))

using variables x and y by with the following formula:

dEuclidean B;Cð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xB � xCð Þ2 þ yB � yCð Þ2
q
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Fig. 9.3 Agglomerative and divisive clustering

5Note that researchers also often use the squared Euclidean distance.

282 9 Cluster Analysis

http://dx.doi.org/10.1007/978-3-642-12541-6_8


The Euclidean distance is the square root of the sum of the squared differences in

the variables’ values. Using the data from Table 9.1, we obtain the following:

dEuclidean B;Cð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6� 5ð Þ2 þ 7� 6ð Þ2
q

¼
ffiffiffi

2
p

¼ 1:414

This distance corresponds to the length of the line that connects objects B and C.

In this case, we only used two variables but we can easily add more under the root

sign in the formula. However, each additional variable will add a dimension to our

research problem (e.g., with six clustering variables, we have to deal with six

dimensions), making it impossible to represent the solution graphically. Similarly,

we can compute the distance between customer B and G, which yields the following:

dEuclidean B;Gð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6� 1ð Þ2 þ 7� 2ð Þ2
q

¼
ffiffiffiffiffi

50
p

¼ 7:071

Likewise, we can compute the distance between all other pairs of objects. All these

distances are usually expressed bymeans of a distance matrix. In this distance matrix,

the non-diagonal elements express the distances between pairs of objects and zeros on

the diagonal (the distance from each object to itself is, of course, 0). In our example,

the distance matrix is an 8 � 8 table with the lines and rows representing the objects

(i.e., customers) under consideration (see Table 9.3). As the distance between objects

B and C (in this case 1.414 units) is the same as between C and B, the distance matrix

is symmetrical. Furthermore, since the distance between an object and itself is 0, you

only need to loot at either the lower or upper non-diagonal elements.

An important feature of distance (and similarity) matrices are ties, which are,

identical distances between two or more objects. For example, in Table 9.3, there are

three pairs of objects with distances of 2.236. In fact, in the 21 cells, there are only 13

unique distance values. In practical applications (which usually rely on much more

clustering variables and objects), ties are more the exception than the rule and

generally don’t have a pronounced impact on the results.

There are also alternative distance measures: The city-block distance uses the

sum of the variables’ absolute differences. This distance measure is often called the

Manhattan metric as it is akin to the walking distance between two points in a city

Table 9.3 Euclidean distance matrix

Objects A B C D E F G

A 0

B 3 0

C 2.236 1.414 0

D 2 3.606 2.236 0

E 3.606 2 1.414 3 0

F 4.123 4.472 3.162 2.236 2.828 0

G 5.385 7.071 5.657 3.606 5.831 3.162 0
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like New York’s Manhattan district, where the distance equals the number of blocks

in the directions North-South and East-West. Using the city-block distance to

compute the distance between customers B and C (or C and B) yields the following:

dCity�block B;Cð Þ ¼ xB � xCj j þ yB � yCj j ¼ 6� 5j j þ 7� 6j j ¼ 2

The resulting distance matrix is in Table 9.4.

Lastly, when working with metric (or ordinal) data, researchers frequently use

the Chebychev distance, which is the maximum of the absolute difference in the

clustering variables’ values. In respect of customers B and C, this result is:

dChebychec B;Cð Þ ¼ max xB � xCj j; yB � yCj jð Þ ¼ max 6� 5j j; 7� 6j jð Þ ¼ 1

Figure 9.4 illustrates the interrelation between these three distance measures

regarding two objects, C and G, from our example.

Table 9.4 City-block distance matrix

Objects A B C D E F G

A 0

B 3 0

C 3 2 0

D 2 5 3 0

E 5 2 2 3 0

F 5 6 4 3 4 0

G 7 10 8 5 8 4 0

C
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Fig. 9.4 Distance measures
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There are other distance measures such as the Angular, Canberra or Mahala-
nobis distances. In many situations, the latter is desirable as it compensates for

collinearity between the clustering variables. However, it is (unfortunately) not

menu-accessible in SPSS.

In many analysis tasks, the variables under consideration have a different

number of categories. This would be the case if we extended our set of clustering

variables by adding another ordinal variable representing the customers’ income

measured by means of, for example, 15 categories. Since the absolute variation

of the income variable would be much greater than the variation of the remaining

two variables (remember, that x and y are measured on 7-point scales), this would

clearly distort our analysis results. We can resolve this problem by standardizing

the data prior to the analysis.

Different standardization methods are available, such as the simple z

standardization, which rescales each variable to have a mean of 0 and a standard

deviation of 1 (see Chap. 5). In most situations, however, standardization by range

(e.g., to a range of 0 to 1 or�1 to 1) performs better.6 We recommend standardizing

the data in general, even though this procedure can reduce or inflate the variables’

influence on the clustering solution.

Another way of (implicitly) standardizing the data is by using the correlation

between the objects instead of distance measures. For example, suppose a respon-

dent rated price consciousness 2 and brand loyalty 3. Now suppose a second

respondent indicated 5 and 6, whereas a third rated these variables 3 and 3. Eucli-

dean, city-block, and Chebychev distances would indicate that the first respondent is

more similar to the third than to the second. Nevertheless, one could convincingly

argue that the first respondent’s ratings are more similar to the second’s, as both rate

brand loyalty higher than price consciousness. This can be accounted for by com-

puting the correlation between two vectors of values as a measure of similarity (i.e.,

high correlation coefficients indicate a high degree of similarity). Consequently,

similarity is no longer defined by means of the difference between the answer

categories but by means of the similarity of the answering profiles. Using correlation

is also a way of standardizing the data implicitly.

Whether you use correlation or one of the distance measures depends on whether

you think the relative magnitude of the variables within an object (which favors

correlation) matters more than the relative magnitude of each variable across

objects (which favors distance). However, it is generally recommended that one

uses correlations when applying clustering procedures that are susceptible to

outliers, such as complete linkage, average linkage or centroid (see section “Select

a Clustering Algorithm”).

6 See Milligan and Cooper (1988).
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Nominal Variables

Whereas the distance measures presented thus far can be used for variables

measured on a metric and, in general, ordinal scale, applying them to nominal

variables is problematic. When nominal variables are involved you should rather

select a similarity measure expressing the degree to which variables’ values share

the same category. These so-called matching coefficients can take different forms

but rely on the same allocation scheme shown in Table 9.5. In this crosstab, cell a is
the number of characteristics present in both objects, whereas cell d describes the

number of characteristics absent in both objects. Cells b and c describe the number

of features present in one but not the other object. This scheme applies to binary

variables, that is, those with two categories. For variables with more than two

categories, you need to convert the categorical variable into a set of binary variables

in order to use matching coefficients. For example, a variable with three categories

needs to be transformed into three binary variables, one for each category (see the

following example).

Based on the allocation scheme in Table 9.5, we can compute different matching

coefficients, such as the simple matching coefficient (SM):

SM ¼ aþ d

aþ bþ cþ d

This coefficient takes into account both, the joint presence and the joint absence

of a characteristic (as indicated by cells a and d in Table 9.5). This feature makes

the simple matching coefficient particularly useful for symmetric variables, where

the joint presence and absence of a characteristic carries an equal degree of

information (e.g., gender). However, if used on non-symmetric variables, objects

may appear very similar because they both lack the same characteristics (as

expressed through cell d) rather than because they share common characteristics

(as expressed through cell a).
In light of this issue, researchers have proposed the Jaccard (JC) and theRussel and

Rao (RR) coefficients, which do not include missing observations in the calculation of

similarity (i.e., they (partially) omit the d cell from Table 9.5 in the calculation). Like

Table 9.5 Allocation scheme for matching coefficients

Object 2

Presence of a

characteristics (1)

Absence of a

characteristic (0)

Object 1 Presence of a characteristic (1) a b

Absence of a characteristic (0) c d
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the simple matching coefficient, they range from 0 to 1 with higher values indicating a

greater degree of similarity.7 They are defined as follows:

JC ¼ a

aþ bþ c

RR ¼ a

aþ bþ cþ d

To provide a brief example comparing the three coefficients, consider the

following three variables:

– Gender: male, female

– Product use: light, medium, and heavy

– Income: low, medium, high

We consider the following two objects:

– Object #1: male customer, light user with low income and

– Object #2: female customer, medium user with a low income

We first transform the measurement data into binary data by recoding the

original three variables into eight binary variables (i.e., two for gender and three

for product use as well as income). The resulting binary data matrix is displayed in

Table 9.6.

Using the allocation scheme from Table 9.5 yields the following results for the

cells: a=1, b=2, c=2, and d=3.
This means that the two objects have only one shared characteristic (a=1), but

three characteristics, which are absent from both objects (d=3). Using this informa-

tion, we can now compute the three coefficients described earlier:

Table 9.6 Recoded measurement data

Gender
(binary code)

Product use
(binary code)

Income
(binary code)

Male Female Light Medium Heavy Low Medium High

Object #1 1 0 1 0 0 1 0 0

Object #2 0 1 0 1 0 1 0 0

7 There are many other matching coefficients such as Yule’s Q, Kulczynski or Ochiai, but since
most applications of cluster analysis rely on metric or ordinal data, we will not discuss these in

greater detail. Check Wedel and Kamakura (2000) for more information on alternative matching

coefficients.
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SM ¼ 1þ 3

1þ 2þ 2þ 3
¼ 0:5,

JC ¼ 1

1þ 2þ 2
¼ 0:2, and

RR ¼ 1

1þ 2þ 2þ 3
¼ 0:125

As can be seen, the simple matching coefficient suggests that the two objects are

reasonably similar. On the contrary, the Jaccard coefficient and in particular the

Russel Rao coefficient suggests that they are not.

Combinations of Metric, Ordinal, and Nominal Variables

Most datasets contain variables that are measured on multiple scales. For

example, a market research questionnaire may ask about the respondent’s income,

product ratings, and last brand purchased. Thus, we have to consider variables

measured on a ratio, ordinal, and nominal scale. How can we simultaneously

incorporate these variables into one analysis? Unfortunately, this problem cannot

be easily resolved. Often research use the distance measures discussed in the

context of metric (and ordinal) data. Even though this approach may slightly

change the results compared to using matching coefficients, it should not be

rejected. Cluster analysis is mostly an exploratory technique whose results only

provide a rough guidance for managerial decisions.

An alternative is to dichotomize all variables and apply the matching coefficients

discussed above. For metric variables, this involves specifying categories (e.g., low,

medium, and high income) and converting these into sets of binary variables. In most

cases the specification of categories is somewhat arbitrary. Furthermore, this proce-

dure leads to a severe loss in precision as we disregard more detailed information on

each object. For example, we would lose precise information on each respondent’s

income, when scaling this variable down into income categories. In the light of these

issues, you should avoid combining metric and nominal variables in a single cluster

analysis. If this is not feasible, the two-step clustering procedure provides a valuable
alternative, which we will discuss later. Lastly, the choice of the (dis)similarity

measure is not very critical for the cluster structure. The choice of the clustering

algorithm is far more important. We therefore deal with this first.

Select a Clustering Algorithm
After having chosen the distance or similarity measure, we need to decide which

clustering algorithm to apply. There are several agglomerative procedures and they

can be distinguished by the way they define the distance from a newly formed

cluster to a certain object, or to other clusters in the solution. The most popular

agglomerative clustering procedures include the following:
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– Single linkage (nearest neighbor): The distance between two clusters

corresponds to the shortest distance between any two members in the two

clusters.

– Complete linkage (furthest neighbor): The oppositional approach to single

linkage assumes that the distance between two clusters is based on the longest

distance between any two members in the two clusters.

– Average linkage: The distance between two clusters is defined as the average

distance between all pairs of the two clusters’ members.

– Centroid: In this approach, the geometric center (centroid) of each cluster is

computed first. This is done by computing the clustering variables’ average

values of all the objects in a certain cluster. The distance between the two

clusters equals the distance between the two centroids.

Figures 9.5–9.8 illustrate these linkage procedures for two clusters.

Fig. 9.5 Single linkage

Fig. 9.6 Complete linkage
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Each of these linkage algorithms can yield totally different results when used

on the same dataset, as each has its specific properties:

– The single linkage algorithm is based on minimum distances, it tends to form

one large cluster with the other clusters containing only one or few objects each.

We can make use of this chaining effect to detect outliers, as these will be

merged with the remaining objects—usually at very large distances—in the last

steps of the analysis. Single linkage is considered the most versatile algorithm.

– The complete linkage method is strongly affected by outliers, as it is based on

maximum distances. Clusters produced by this method are likely to be rather

compact and tightly clustered.

– The average linkage and centroid algorithms tend to produce clusters with low

within-cluster variance and with similar sizes. Complete and average linkage are

affected by outliers but less than the complete linkage method.

Fig. 9.8 Centroid

Fig. 9.7 Average linkage
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Another commonly used approach in hierarchical clustering isWard’s method.
This approach does not combine the two most similar objects successively.

Instead, those objects whose merger increases the overall within-cluster vari-

ance to the smallest possible degree, are combined. If you expect somewhat

equally sized clusters and the dataset does not include outliers, you should

always use Ward’s method.

To better understand how a clustering algorithm works, let’s manually examine

some of the single linkage procedure’s calculation steps. We start off by looking at

the initial (Euclidean) distance matrix in Table 9.3. In the very first step, the two

objects exhibiting the smallest distance in the matrix are merged. Note that we

always merge those objects with the smallest distance, regardless of the clustering

procedure (e.g., single or complete linkage). As we can see, this happens to two

pairs of objects, namely B and C (d(B, C) ¼ 1.414), as well as C and E (d(C, E) ¼
1.414). Depending on the clustering procedure used, this tie can lead to different

clustering results. In this example we simply proceed by forming a new cluster

using objects B and C.8

Having made this decision, we then form a new distance matrix by considering

the single linkage decision rule as discussed above. According to this rule, the

distance from, for example, object A to the newly formed cluster is the minimum of

d(A, B) and d(A, C). As d(A, C)=2.236 is smaller than d(A, B)=3, the distance from

A to the newly formed cluster is equal to d(A, C); that is, 2.236. We also compute

the distances from cluster [B,C] (clusters are indicated by means of squared

brackets) to all other objects (i.e. D, E, F, G) and simply copy the remaining

distances—such as d(E, F)—that the previous clustering step has not affected.

This yields the distance matrix shown in Table 9.7.

Table 9.7 Distance

matrix after first

clustering step (single

linkage)

Objects A B, C D E F G

A 0

B, C 2.236 0

D 2 2.236 0

E 3.606 1.414 3 0

F 4.123 3.162 2.236 2.828 0

G 5.385 5.657 3.606 5.831 3.162 0

8Note that because of ties, the final results may depend on the order of objects in the input file.

Against this background, van der Kloot et al. (2005) recommend re-running the analysis with

different input order of the data. At the same time, however, ties are more the exception than the

rule in practical applications and generally don’t have a pronounced impact on the results.
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Continuing the clustering procedure, we simply repeat the last step by merging

the objects in the new distance matrix that exhibit the smallest distance (in this case,

the newly formed cluster [B, C] and object E) and calculate the distance from this

new cluster to all other objects. The result of this step is described in Table 9.8.

Try to calculate the remaining steps yourself and compare your solution with the

distance matrices in the following Tables 9.9–9.11.

By following the single linkage procedure, the last steps involve the merger

of cluster [A,B,C,D,E,F] and object G at a distance of 3.162. Do you get the same

results? As you can see, conducting a basic cluster analysis manually is not that

hard at all – not if there are only a few objects in the dataset.

A common way to visualize the cluster analysis’s progress is by drawing a

dendrogram, which displays the distance level at which there is a merger of objects

and clusters (Fig. 9.9).

Table 9.9 Distance

matrix after third

clustering step (single

linkage)

Objects A, D B, C, E F G

A, D 0

B, C, E 2.236 0

F 2.236 2.828 0

G 3.606 5.657 3.162 0

Table 9.8 Distance

matrix after second

clustering step (single

linkage)

Objects A B, C, E D F G

A 0

B, C, E 2.236 0

D 2 2.236 0

F 4.123 2.828 2.236 0

G 5.385 5.657 3.606 3.162 0

Table 9.10 Distance

matrix after fourth

clustering step (single

linkage)

Objects A, B, C, D, E F G

A, B, C, D, E 0

F 2.236 0

G 3.606 3.162 0

Table 9.11 Distance

matrix after fifth

clustering step (single

linkage)

Objects A, B, C, D, E, F G

A, B, C, D, E, F 0

G 3.162 0
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We read the dendrogram from left to right. The vertical lines indicate the

distances at which objects have been combined. For example, according to our

calculations above, objects B, C, and E are merged at a distance of 1.414.

Decide on the Number of Clusters
An important question we haven’t yet addressed is how to decide on the number of

clusters. Unfortunately, hierarchical methods provide only very limited guidance for

making this decision. The only meaningful indicator relates to the distances at which

the objects are combined. Similar to the scree plot in factor analysis, we can seek a

solution in which an additional combination of clusters or objects would occur at a

greatly increased distance. This raises the issue of what a great distance is.

One potential way to solve this problem is to plot the number of clusters on the

x-axis (starting with the one-cluster solution at the very left) against the distance at

which objects or clusters are combined on the y-axis. Using this plot, we then search

for the distinctive break (elbow).
Alternatively, we can make use of the dendrogram which essentially carries the

same information. SPSS provides a dendrogram; however, it differs slightly from the

one presented in Fig. 9.9 as SPSS rescales the distances to a range of 0–25 (i.e., the

last merging step to a one-cluster solution takes place at a rescaled distance of 25).

The rescaling often lengthens the merging steps, thus making breaks occurring at a

greatly increased distance level more obvious.

However, this distance-based decision rule does not work very well in all cases. It

is often difficult to identify where the break actually occurs. This is also the case in our

example above. By looking at the dendrogram, we could justify a two-cluster solution

([A,B,C,D,E,F] and [G]), as well as a five-cluster solution ([B,C,E], [A], [D], [F], [G]).

Research has suggested several other procedures for determining the number of

clusters in a dataset. Most notably, the variance ratio criterion (VRC) by Calinski

0 1 2 3

B

C

E

A

D

F

G

Distance
1.5 2.5

Objects B, C, and E 
are merged

Fig. 9.9 Dendrogram
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and Harabasz (1974) works well in many situations.9 For a solution with n objects

and k segments, the VRC is as follows:

VRCk ¼ ðSSB=ðk � 1ÞÞ=ðSSW=ðn� kÞÞ;

where SSB is the sum of the squares between the segments and SSW is the sum of the

squares within the segments. The criterion should seem familiar, as this is similar to

the F-value of a one-way ANOVA. Consequently, the VRC can easily be computed

using SPSS, even though it is not readily available in the clustering procedures’

outputs. To finally determine the appropriate number of segments, we compute ωk

for each segment solution as follows:

ωk ¼ VRCkþ1 � VRCkð Þ � VRCk � VRCk�1ð Þ:

In the next step, we choose the number of segments k that minimizes the value in

ωk. Owing to the term VRCk�1, the minimum number of clusters that can be

selected is three, which is a clear disadvantage of the criterion, thus limiting its

application in practice.

Overall, the data can often only provide rough guidance regarding the number

of clusters you should select; consequently, you should rather revert to

practical considerations. Occasionally, you might have a priori knowledge,

or a theory on which you can base your choice. However, first and foremost,

you should ensure that your results are interpretable and meaningful. Not only

must the number of clusters be small enough to ensure manageability, but

each segment should also be large enough to warrant strategic attention.

9.3.2.2 Partitioning Methods: k-means
Understanding k-means Clustering
Another important group of clustering procedures are partitioning methods. As with

hierarchical clustering, there is a wide array of different algorithms; of these, the

k-means procedure is the most important one for market research.10 The k-means

algorithm follows an entirely different concept than the hierarchical methods

discussed before. This algorithm is not based on distance measures such as

Euclidean distance or city-block distance, but uses the within-cluster variation as a

9Milligan and Cooper (1985) compare various criteria.
10 Note that the k-means algorithm is one of the simplest non-hierarchical clustering methods.

Several extensions, such as k-medoids (Kaufman and Rousseeuw 2005) have been proposed to

handle limitations of the procedure. More advanced methods include finite mixture models

(McLachlan and Peel 2000), neural networks (Bishop 2006), and self-organizing maps (Kohonen

1982). Andrews and Currim (2003) discuss the validity of some of these approaches.
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measure to form homogenous clusters. Specifically, the procedure aims at partitioning

the data in such a way that the within-cluster variation is minimized.

The clustering process starts by randomly assigning objects to a (pre-specified)

number of clusters. The objects are then successively reassigned to other clusters to

minimize the within-cluster variation, which is basically the (squared) distance

from each observation to the center of the associated cluster. If the reallocation of

an object to another cluster decreases the within-cluster variation, this object is

reassigned to that cluster.

With the hierarchicalmethods, an object remains in a cluster once it is assigned to it,

but with k-means, cluster affiliations can change in the course of the clustering process.

Consequently, k-means does not build a hierarchy as described before (Fig. 9.3),which

is why the approach is also frequently labeled as non-hierarchical. Another important

property of k-means clustering is that we have to pre-specify the number of clusters

prior to running the analysis. We discuss this issue later in this chapter.

For a better understanding of the approach, let’s take a look at how it works in

practice. Figs. 9.10–9.13 illustrate the four steps of the k-means clustering process:

– Step 1: Using the pre-specified number of clusters as input, the algorithm ran-

domly selects a center for each cluster. In our example, two cluster centers are

randomly initiated, which CC1 (first cluster) and CC2 (second cluster) in Fig. 9.10

represent.11

– Step 2: Euclidean distances are computed from the cluster centers to every

single object. Each object is then assigned to the cluster center with the shortest

distance to it. In our example (Fig. 9.11), objects A, B, and C are assigned to the

first cluster, whereas objects D, E, F, and G are assigned to the second. We now

have our initial partitioning of the objects into two clusters.

BA
CC1

D E

C

CC2

F

B
ra

n
d

 lo
ya

lt
y 

(y
)

G

Price consciousness (x)

Fig. 9.10 k-means

procedure (step 1)

11 Conversely, SPSS always sets one observation as the cluster center instead of picking some

random point in the dataset.
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– Step 3: Based on the initial partition from step 2, each cluster’s geometric center

(i.e., its centroid) is computed. This is done by computing the mean values of the

objects contained in the cluster (e.g., A, B, C in the first cluster) regarding each

of the variables (price consciousness and brand loyalty). As we can see in

Fig. 9.12, both clusters’ centers now shift into new positions (CC1’ for the first

and CC2’ for the second cluster).

– Step 4: The distances from each object to the newly located cluster centers are

computed and objects are again assigned to a certain cluster on the basis of their

minimum distance to other cluster centers (CC1’ and CC2’). Since the cluster

centers’ position changed with respect to the initial situation in the first step,

this could lead to a different cluster solution. This is also true of our example,

as object E is now – unlike in the initial partition – closer to the first cluster

center (CC1’) than to the second (CC2’). Consequently, this object is now assigned

to the first cluster (Fig. 9.13).
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Fig. 9.12 k-means

procedure (step 3)
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Fig. 9.11 k-means

procedure (step 2)
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The k-means procedure now repeats until a predetermined number of iterations

are reached, or convergence is achieved (i.e., there is no change in the cluster

affiliations).

Hierarchical or k-means clustering?

Generally, k-means is superior to hierarchical methods as it is less affected by

outliers and the presence of irrelevant clustering variables. Furthermore,

k-means can be applied to very large datasets, as the procedure is less

computationally demanding than hierarchical methods. In fact, we suggest

k-means for sample sizes above 500, especially if many clustering variables

are used. However, k-means should only be used on interval or ratio-scaled

data as the procedure relies on Euclidean distances. Nevertheless, the proce-

dure is routinely used on ordinal data as well, even though there might be some

distortions. Finally, in k-means clustering, we have to pre-specify the number

of clusters, which means we need to have some idea of the expected cluster

solution before we start.

Decide on the Number of Clusters
When running k-means clustering, the researcher has to pre-specify the number of

clusters to retain from the data. This makes k-means somewhat less attractive to

some researchers and hinders its routine application in practice. Nevertheless, there

are different ways to make this decision:

– Apply the VRC (discussed in the context of hierarchical clustering) on different

number of clusters and chose the number that minimizes ωk. See the

8 Web Appendix (! Chap. 9) for an application of the VRC.
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– Run a hierarchical procedure to determine the number of clusters and k-means

afterwards.12 This approach also enables you to find starting values for the initial

cluster centers to handle a second problem, which relates to the procedure’s

sensitivity to the initial classification (we will follow this approach in the

example application).

– Rely on prior information such as earlier research findings.

Whatever approach you decide to choose, always keep in mind that cluster

analysis is primarily an exploratory technique. Thus, practical considerations

are of utmost importance when deciding on the number of clusters.

9.3.2.3 Two-Step Clustering
We have already discussed the issue of analyzing variables measured on different

scale levels in this chapter. The two-step cluster analysis developed by Chiu et al.

(2001) has been specifically designed to handle this problem. Like k-means, the

procedure can also effectively cope with very large datasets.

The name two-step clustering is already an indication that the algorithm is

based on a two-stage approach: In the first stage, the algorithm undertakes a

procedure that is very similar to the k-means algorithm. Based on these results,

the procedure conducts a modified hierarchical agglomerative clustering proce-

dure that combines the objects sequentially to form homogenous clusters. This is

done by building a so-called cluster feature tree whose “leaves” represent distinct
objects in the dataset.

The procedure can handle categorical and continuous variables simulta-

neously and offers the user the flexibility to specify the cluster numbers as

well as the maximum number of clusters, or to allow the technique to automati-

cally choose the number of clusters on the basis of statistical evaluation criteria.

Likewise, the procedure guides the decision of how many clusters to retain from

the data by calculating measures of fit such as Akaike’s Information Criterion
(AIC) or Bayes Information Criterion (BIC). These are relative measures of

goodness-of-fit and are used to compare different solutions with different num-

bers of segments. “Relative” means that these criteria are not scaled on a range

of, for example, 0 to 1 but can generally take any value. Compared to an

alternative solution with a different number of segments, smaller values in

AIC or BIC indicate a better fit. SPSS computes solutions for different segment

numbers (up to the maximum number of segments specified before) and chooses

the appropriate solution by looking for the smallest value in the chosen criterion.

12 See Punji and Stewart (1983) for additional information on this sequential approach.
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However, which criterion should we choose? AIC is well-known for

overestimating the “correct” number of segments, while BIC has a slight ten-

dency to underestimate this number. Thus, it is worthwhile comparing the

clustering outcomes of both criteria and selecting a smaller number of segments

than actually indicated by AIC. Nevertheless, when running two separate

analyses, one based on AIC and the other based on BIC, SPSS usually renders

the same results. But what do we do if the two criteria indicate different numbers

of clusters? In such a situation, we should evaluate each solution on practical

grounds as well as in light of the solution’s interpretability. Do not solely rely on

the automatic model selection, especially when there is a combination of con-

tinuous and categorical variables, as this does not always work well. Examine

the results very carefully!

Two-step clustering also offers an overall goodness-of-fit measure called silhou-
ette measure of cohesion and sepearation. It is essentially based on the average

distances between the objects and can vary between �1 and þ1. Specifically, a

silhouette measure of less than 0.20 indicates a poor solution quality, a measure

between 0.20 and 0.50 a fair solution, whereas values of more than 0.50 indicate a

good solution. Furthermore, the procedure indicates each variable’s importance for

the construction of a specific cluster.

These desirable features make the somewhat less popular two-step clustering a

viable alternative to the traditional methods. You can find a more detailed discus-

sion of the two-step clustering procedure in the8Web Appendix (! Chap. 9), but
we will also apply this method to the subsequent example.

9.3.3 Validate and Interpret the Cluster Solution

Before interpreting the cluster solution, we need to assess the stability of the

results. Stability means that the cluster membership of individuals does not change,

or only changes little when different clustering methods are used to cluster the

objects. Thus, when different methods produce similar results, we claim stability.

The aim of any cluster analysis is to differentiate well between the objects. Thus,

the identified clusters should substantially differ from each other and members of

different clusters should respond differently to different marketing-mix elements

and programs.

Lastly, we need to profile the cluster solution by using observable variables.

This step ensures that we can easily assign new objects to clusters based on

observable traits. For example, we could identify clusters based on loyalty to a

product, but to use these different clusters, their membership should be identifiable

according to tangible variables, such as income, location, or family size in order to

be actionable.
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The key to successful segmentation is to critically revisit the results of different

cluster analysis set-ups (e.g., by using different algorithms on the same data) in

terms of managerial relevance. The following criteria help identify a clustering

solution (Kotler and Keller 2011; Tonks 2009).

– Substantial: The segments are large and profitable enough to serve.

– Reliability: Only segments that are stable over time can provide the

necessary grounds for a successful marketing strategy. If segments change

their composition quickly, or their members’ behavior, targeting strategies

are not likely to succeed. Therefore, a certain degree of stability is neces-

sary to ensure that marketing strategies can be implemented and produce

adequate results. Reliability can be evaluated by critically revisiting and

replicating the clustering results at a later date.

– Accessible: The segments can be effectively reached and served, which

requires them to be characterized by means of observable variables.

– Actionable: Effective programs can be formulated to attract and serve the

segments.

– Parsimonious: To be managerially meaningful, only a small set of sub-

stantial clusters should be identified.

– Familiar: To ensure management acceptance, the segments composition

should be comprehensible.

– Relevant: Segments should be relevant in respect of the company’s

competencies and objectives.

– Compatibility: Segmentation results meet other managerial functions’

requirements.

9.3.3.1 Stability
Stability is evaluated by using different clustering procedures on the same data and

considering the differences that occur. For example, you may first run a hierarchical

clustering procedure, followed by k-means clustering to check whether the cluster

affiliations of the objects change. Alternatively, in hierarchical clustering, you can

use different distance measures and evaluate their effect on the stability of the

results. However, note that it is common for results to change even when your

solution is adequate. As a rule of thumb, if more than 20% of the cluster affiliations

change from one technique to the other, you should reconsider the set-up and use,

for example, a different set of clustering variables, or reconsider the number of

clusters. Note, however, that this percentage is likely to increase with the number of

clusters used.

Another common approach is to split the dataset into two halves and to analyze

each separately using the same settings (i.e., the same clustering variables, proce-

dure, number of segments, etc.). You then compare the two solutions’ cluster

centroids using, for example, t-tests of an ANOVA (see Chap. 6). If these do not

differ significantly, you can presume that the overall solution has a high degree of

stability.
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When using hierarchical clustering, it is also worthwhile changing the order of the

objects in your dataset and re-running the analysis to check the results’ stability. As

discussed earlier, due to ties in the distance matrix, hierarchical clustering can suffer

from a non-uniqueness problem. If changing the order of the objects drastically changes

the segment compositions (e.g., in terms of segment sizes), you should reconsider the

set-up of the analysis and, for example, re-run it with different clustering variables.

9.3.3.2 Differentiation of the Data
To examine whether the final partition differentiates the data well, we need to

examine the cluster centroids. This step is highly important, as the analysis sheds

light on whether the segments are truly distinct. Only if objects across two (or more)

clusters exhibit significantly different means in the clustering variables (or any

other relevant variable) can they be distinguished from each other. This can easily

be ascertained by comparing the means of the clustering variables across the

clusters with independent t-tests or ANOVA (see Chap. 6).

Furthermore, we need to assess the solution’s criterion validity. We do this by

focusing on the criterion variables that have a theoretical relationship with the

clustering variables, but were not included in the analysis. In market research,

criterion variables are usually managerial outcomes, such as the sales per person, or

willingness-to-pay. If these criterion variables differ significantly, we can conclude

that the clusters are distinct groups with criterion validity.

9.3.3.3 Profiling
As indicated at the beginning of the chapter, cluster analysis usually builds on

unobservable clustering variables. This creates an important problem when working

with the final solution: How can we decide to which segment a new object should be

assigned if its unobservable characteristics, such as personality traits, personal values,

or lifestyles, are unknown? We could survey these attributes and make a decision

based on the clustering variables. However, this is costly and researchers therefore

usually try to identify observable variables (e.g., demographics) that best mirror the

partition of the objects. More precisely, these observable variables should partition

the data into similar groups as the clustering variables do. Using these observable

variables, it is then easy to assign a new object (whose cluster membership is

unknown) to a certain segment. For example, assume that we used a set of items to

assess the respondents’ values and learned that a certain segment comprises

respondents who appreciate self-fulfillment, enjoyment of life, and a sense of accom-

plishment, whereas this is not the case in another segment. If we were able to identify

explanatory variables such as gender or age, which distinguish these segments

adequately, then we could assign a new person to a specific segment on the basis

of these observable variables whose value traits may still be unknown.

9.3.3.4 Interpret the Clustering Solution
The interpretation of the solution requires characterizing each segment by using the

criterion or other variables (in most cases, demographics). This characterization

should focus on criterion variables that convey why the cluster solution is relevant.
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For example, you could highlight that customers in one segment have a lower

willingness to pay and are satisfied with lower service levels, whereas customers in

another segment are willing to pay more for a superior service. By using this

information, we can also try to come up with a meaningful name or label for each

cluster; that is, one that adequately reflects the objects in the cluster. This is usually

a challenging task, especially when unobservable variables are involved.

While companies develop their own market segments, they frequently use

standardized segments, based on established buying trends, habits, and

customers’ needs to position their products in different markets. The

PRIZM lifestyle by Nielsen is one of the most popular segmentation

databases. It combines demographic, consumer behavior, and geographic

data to help marketers identify, understand, and reach their customers and

prospective customers. PRIZM defines every US household in terms of 66

distinct segments to help marketers discern these consumers’ likes, dislikes,

lifestyles, and purchase behaviors.

An example is segment #51, called “Shotguns & Pickups,” which

comprises lower to middle-class families in rural areas in the US with a low

to mid-level income (http://www.MyBestSegments.com).

Table 9.12 summarizes the steps involved in a hierarchical and k-means cluster-

ing. We also describe steps related to two-step clustering, which we will further

introduce in the subsequent example.

Table 9.12 Steps involved in carrying out a cluster analysis in SPSS

Theory Action

Research problem

Identification of homogenous groups

of objects in a population

Select clustering variables that should

be used to form segments

Select relevant variables that potentially exhibit high

degrees of criterion validity with regard to a specific

managerial objective.

Requirements

Sufficient sample size Make sure that the relationship between objects and

clustering variables is reasonable (rule of thumb:

Number of observations should be at least 2m, where m is

the number of clustering variables). Ensure that the sample

size is large enough to guarantee substantial segments.

Low levels of collinearity among

the variables

u Analyze u Correlate u Bivariate

Eliminate or replace highly correlated variables

(correlation coefficients > 0.90).

(continued)
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Table 9.12 (continued)

Theory Action

Specification

Choose the clustering procedure If there is a limited number of objects in your dataset

or you do not know the number of clusters:

u Analyze u Classify u Hierarchical Cluster

If there are many observations (> 500) in your dataset and

you have a priori knowledge regarding the number of

clusters:

u Analyze u Classify u K-Means Cluster

If there are many observations in your dataset and the

clustering variables are measured on different scale levels:

u Analyze u Classify u Two-Step Cluster

Select a measure of similarity or

dissimilarity (only hierarchical

and two-step clustering)

Hierarchical methods:
u Analyze u Classify u Hierarchical Cluster u Method

u Measure

Depending on the scale level, select the measure; convert

variables with multiple categories into a set of binary

variables and use matching coefficients; standardize

variables if necessary (on a range of 0 to 1 or �1 to 1).

Two-step clustering:
u Analyze u Classify u Two-Step Cluster u Distance

Measure

Use Euclidean distances when all variables

are continuous; for mixed variables, use log-likelihood.

Choose clustering algorithm

(only hierarchical clustering)

u Analyze u Classify u Hierarchical Cluster u Method

u Cluster Method

Use Ward’s method if equally sized clusters are expected

and no outliers are present. Preferably use single linkage,

also to detect outliers.

Decide on the number of clusters Hierarchical clustering:
Examine the dendrogram:

u Analyze u Classify u Hierarchical Cluster

u Plots u Dendrogram

Draw a scree plot (e.g., using Microsoft Excel) based on

the coefficients in the agglomeration schedule.

Compute the VRC using the ANOVA procedure:

u Analyze u Compare Means u One-Way ANOVA

Move the cluster membership variable in the Factor box

and the clustering variables in the Dependent List box.

Compute VRC for each segment solution and compare

values.

k-means:
Run a hierarchical cluster analysis and decide on the

number of segments based on a dendrogram or scree plot;

use this information to run k-means with k clusters.

(continued)
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9.4 Example

Thaltegos (http://www.thaltegos.com) is a German management consulting com-

pany focusing on analytical approaches for marketing, sales, and after sales in the

automotive industry. A major US car manufacturer commissioned Thaltegos to

support the launch of an innovative electric car. To better position the car in the

market, the manufacturer asked Thaltegos to provide transparency concerning the

Table 9.12 (continued)

Theory Action

Compute the VRC using the ANOVA procedure:

u Analyze u Classify u K-Means Cluster u Options u

ANOVA table; Compute VRC for each segment solution

and compare values.

Two-step clustering:
Specify the maximum number of clusters:

u Analyze u Classify u Two-Step Cluster

u Number of Clusters

Run separate analyses using AIC and, alternatively, BIC

as clustering criterion:

u Analyze u Classify u Two-Step Cluster u Clustering

Criterion

Examine the auto-clustering output.

Validate and interpret the cluster solution

Stability Re-run the analysis using different clustering procedures,

algorithms or distance measures.

Split the datasets into two halves and compute the

clustering variables’ centroids; compare centroids for

significant differences (e.g., independent-samples t-test

or one-way ANOVA).

Change the ordering of objects in the dataset (hierarchical

clustering only).

Differentiation of the data Compare the cluster centroids across the different clusters

for significant differences. Assess the solution’s criterion

validity.

Profiling Identify observable variables (e.g., demographics) that

best mirror the partition of the objects based on the

clustering variables.

Interpretation of the cluster

solution

Identify names or labels for each cluster and characterize

each cluster by means of observable variables.
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European car market. In cooperation with a market research firm, Thaltegos

gathered data from major automotive manufacturers to develop a segmentation

concept. The database consists of the following vehicle characteristics, all of which

have been measured on a ratio scale (variable names in parentheses):

– Engine displacement (displacement)
– Turning moment in Nm (moment)
– Horsepower (horsepower)
– Length in mm (length)
– Width in mm (width)
– Net weight in kg (weight)
– Trunk volume in liters (trunk)
– Maximum speed in km/h (speed)
– Acceleration 0–100 km/h in seconds (acceleration)

The pretest sample of 15, randomly taken, cars is shown in Fig. 9.14. In practice,

clustering is done on much larger samples but we use a small sample size to

illustrate the clustering process. Keep in mind that in this example, the ratio

between the objects and clustering variables is much too small. The dataset used

is thaltegos.sav (8 Web Appendix ! Chap. 9).

In the next step, we will run several different clustering procedures on the data.

We first apply a hierarchical cluster analysis based on Euclidean distances, using

the single linkage method. This will help us determine a suitable number of

segments, which we will use as input for a subsequent k-means clustering. Finally,

we will run a two-step cluster analysis using SPSS.

Fig. 9.14 Data
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9.4.1 Pre-analysis: Collinearity Assessment

Before we start with the clustering process, we have to examine the variables for

substantial collinearity. Just by looking at the variable set, we suspect that there are

some highly correlated variables in our dataset. For example, we expect rather high

correlations between speed and acceleration. To determine this, we run a bivariate

correlation analysis by clicking u Analyze u Correlate u Bivariate, which will

open a dialog box similar to that in Fig. 9.15. Enter all variables into the Variables

box and select the box Pearson (underCorrelation Coefficients) because these are

continuous variables.

The correlation matrix in Table 9.13 supports our expectations – there are

several variables that have high correlations. Displacement exhibits high (absolute)
correlation coefficients with horsepower, speed, and acceleration, with values well
above 0.90, indicating possible collinearity issues. Similarly, horsepower is highly
correlated with speed and acceleration. Likewise, length shows a high degree of

correlation with width, weight, and trunk.
A potential solution to this problem would be to run a factor analysis and

perform a cluster analysis on the resulting factor scores. Since the factors obtained

are, by definition, independent, this would allow for an effective handling of the

collinearity issue. However, as this approach is associated with several problems

(see Box 9.1), we should reduce the variables, for example, by omitting displacement,
horsepower, and length from the subsequent analyses. The remaining variables still

provide a sound basis for carrying out cluster analysis.

Fig. 9.15 Bivariate correlations dialog box
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9.4.2 Hierarchical Clustering

To run the hierarchical clustering procedure, click on u Analyze u Classify u

Hierarchical Cluster, which opens a dialog box similar to Fig. 9.16.

Move the variables acceleration, moment, speed, trunk, weight, and width into

the Variable(s) box and specify name as the labeling variable (box Label Cases

by). The Statistics option gives us the opportunity to request the distance matrix

(labeled proximity matrix in this case) and the agglomeration schedule, which

provides information on the objects being combined at each stage of the clustering

process. Furthermore, we can specify the number or range of clusters to retain from

the data. As we do not yet know how many clusters to retain, just check the box

Agglomeration schedule and continue.

Under Plots, check the box Dendrogram to graphically display the distances at

which objects and clusters are joined. Also ensure you select the Icicle diagram (All

clusters), which is yet another graph for displaying clustering solutions.

The option Method allows us to specify the cluster method (e.g., single linkage

or Ward’s method), the distance measure (e.g., Chebychev distance or the Jaccard

coefficient), and the type of standardization of values. In this example, we use the

single linkage method (Nearest neighbor) based on Euclidean distances. Since

the variables are measured on different levels (e.g., speed versus weight), make sure

to standardize the variables, using the Range �1 to 1 (by variable) in the

Transform Values drop-down list.

Lastly, the Save option enables us to save cluster memberships for a single

solution or a range of solutions. Saved variables can then be used in subsequent

Fig. 9.16 Hierarchical cluster analysis dialog box
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analyses to explore differences between groups. As a start, we will skip this option,

so continue and click on OK in the main menu.

First, we take a closer look at the agglomeration schedule (Table 9.14), which

displays the objects or clusters combined at each stage (second and third column)

and the distances at which this merger takes place. For example, in the first stage,

objects 5 and 6 are merged at a distance of 0.149. From here onward, the resulting

cluster is labeled as indicated by the first object involved in this merger, which is

object 5. The last column on the very right tells you in which stage of the

algorithm this cluster will appear next. In this case, this happens in the second

step, where it is merged with object 7 at a distance of 0.184. The resulting cluster

is still labeled 5, and so on. Similar information is provided by the icicle diagram
shown in Fig. 9.17. Its name stems from the analogy to rows of icicles hanging from

the eaves of a house. The diagram is read from the bottom to the top; the columns

correspond to the objects being clustered, and the rows represent the number of

clusters.

As described earlier, we can use the agglomeration schedule to determine the

number of segments to retain from the data. Next, we generate a Scree Plot by
plotting the distances (Coefficients column in Table 9.14) against the number of

clusters. The distinct break (elbow) indicates the solution regarding where an

additional combination of two objects or clusters would occur at a greatly increased

distance.

Table 9.14 Agglomeration schedule

Agglomeration Schedule

Stage Cluster Combined

Coefficients

Stage Cluster First Appears

Next StageCluster 1 Cluster 2 Cluster 1 Cluster 2

1 5 6 .149 0 0 2
2 5 7 .184 1 0 3
3 4 5 .201 0 2 5
4 14 15 .213 0 0 6
5 3 4 .220 0 3 8
6 13 14 .267 0 4 11
7 11 12 .321 0 0 9
8 2 3 .353 0 5 10
9 10 11 .357 0 7 11
10 1 2 .389 0 8 14
11 10 13 .484 9 6 13
12 8 9 .575 0 0 13
13 8 10 .618 12 11 14
14 1 8 .910 10 13 0
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Thus, the number of clusters prior to this merger is the most probable solution.

SPSS does not automatically provide this plot. To generate a scree plot we have to

double-click the Agglomeration Schedule in the output window. Next, we select

all coefficients and right-click the mouse button. In the menu that opens up, we have

to select Create Graph u Line (Fig. 9.18). SPSS will add a line chart to the output

which represents a scree plot. Note that in this plot, the x-axis represents the merging

steps which means that, for example, the step from stage 13 to 14 represents the step

from the two-cluster to the one-cluster solution. Note that – unlike in the factor

analysis – we do not pick the solution with one cluster less than indicated by the

elbow. The sharp increase in distance when switching from a one to a two-cluster

solution occurs in almost all analyses and must not be viewed as a reliable indicator

for the decision regarding the number of segments.

The scree plot in Fig. 9.19 shows that there is no clear elbow indicating a suitable

number of clusters to retain. Based on the results, one could argue for a five-segment

or six-segment solution. However, considering that there are merely 15 objects in the

dataset, this seems too many, as we then have very small (and, most probably,

meaningless) clusters. Consequently, a two, three or four-segment solution seems

more appropriate.

Fig. 9.17 Icicle diagram
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Fig. 9.18 Generating a scree plot

Fig. 9.19 Scree plot
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Let’s take a look at the dendrogram shown in Fig. 9.20. We read the dendrogram

from the left to the right. Vertical lines are objects and clusters joined together – their

position indicates the distance at which this merger takes place. When creating

a dendrogram, SPSS rescales the distances to a range of 0–25; that is, the last merging

step to a one-cluster solution takes place at a (rescaled) distance of 25. Note that this

differs from our manual calculation shown in Fig. 9.9, where we did not do any

rescaling! Again, the analysis only provides a rough guidance regarding the number of

segments to retain. The change in distances between the mergers indicates that

(besides a two-segment solution) both a three and four-segment solution are

appropriate.

To clarify this issue, let’s re-run the analysis, but this time we pre-specify dif-

ferent segment numbers to compare these with regard to content validity. To do

so, just re-run the analysis using hierarchical clustering. Now switch to the Save

option, specify a range of solutions from 2 to 4 and run the analysis. SPSS generates

the same output but also adds three additional variables to your dataset (CLU4_1,
CLU3_1, and CLU2_1), which reflect each object’s cluster membership for the

respective analysis. SPSS automatically places CLU in front, followed by the number

of clusters (4, 3, or 2), to identify each object’s cluster membership. Table 9.15

illustrates the results. SPSS does not produce this table for us, so we need to enter

these cluster memberships ourselves in a table or spreadsheet.

Fig. 9.20 Dendrogram
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When we view the results, a three-segment solution appears promising. In this

solution, the first segment comprises compact cars, whereas the second segment

contains sports cars, and the third limousines. Increasing the solution by one

segment would further split up the sports cars segment into two sub-segments.

This does not appear to be very helpful, as now two of the four segments comprise

only one object. This underlines the single linkage method’s tendency to identify

outlier objects—in this case the Nissan 350Z and Porsche Cayman. In this specific

example, the Nissan 350Z and Porsche Cayman should not be regarded as outliers

in a classical sense but rather as those cars which may be key competitors in the

sports car market. In contrast, the two-segment solution appears to be rather

imprecise considering the vast differences in the mix of sports and middle-sized

cars in this solution.

To get a better overview of the results, let’s examine the cluster centroids; that is, the

mean values of the objects contained in the cluster on selected variables. To do so, we

split up the dataset using the Split File command (u Data u Split File) (see Chap. 5).

This enables us to analyze the data on the basis of a grouping variable’s values. In this

case, we choose CLU3_1 as the grouping variable and select the option Compare

groups. Subsequently, we calculate descriptive statistics (u Analyze u Descriptive

Statistics u Descriptives, also see Chap. 5) and calculate the mean, minimum

and maximum values, as well as the standard deviations of the clustering variables.

Table 9.16 shows the results for the variables weight, speed, and acceleration.

Table 9.15 Cluster memberships

Name

Observation

member of cluster

(four clusters)

Observation

member of cluster

(three clusters)

Observation

member of cluster

(two clusters)

Kia Picanto 1.1 Start 1 1 1

Suzuki Splash 1.0 1 1 1

Renault Clio 1.2 1 1 1

Dacia Sandero 1.6 1 1 1

Fiat Grande Punto 1.4 1 1 1

Peugot 207 1.4 1 1 1

Renault Clio 1.6 1 1 1

Porsche Cayman 2 2 2

Nissan 350Z 3 2 2

Mercedes C 200 CDI 4 3 2

VW Passat Variant 2.0 4 3 2

Skoda Octavia 2.0 4 3 2

Mercedes E 280 4 3 2

Audi A6 2.4 4 3 2

BMW 525i 4 3 2
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From the descriptive statistics, it seems that the first segment contains light-weight

compact cars (with a lower maximum speed and acceleration). In contrast, the second

segment comprises two sports cars with greater speed and acceleration, whereas the

third segment contains limousines with an increased weight and intermediate speed

and acceleration. Since the descriptives do not tell us if these differences are signifi-

cant, we could use a one-way ANOVA (u Analyze u Compare Means u One-Way

ANOVA) to calculate the cluster centroids and compare the differences formally.

9.4.3 k-means Clustering

In the next step, we want to use the k-means method on the data. We have previously

seen that we need to specify the number of segments when conducting k-means

clustering. SPSS then initiates cluster centers and assigns objects to the clusters

based on their minimum distance to these centers. Instead of letting SPSS choose the

centers, we can also save the centroids (cluster centers) from our previous analysis

as input for the k-means procedure. To do this, we need to do some data management

in SPSS, as the cluster centers have to be supplied in a specific format.

Consequently, we need to aggregate the data first (briefly introduced in

Chap. 5). By selecting u Data u Aggregate, a dialog box similar to Fig. 9.21

opens up. Note that we choose Display Variable Names instead of Display

Variable Labels by clicking the right mouse button on the left box showing the

variables in the dataset. Now we proceed by choosing the cluster membership

variable (CLU3_1) as a break variable and move the moment, width, weight,
trunk, speed, and acceleration variables into the Summaries of Variable(s) box.

When using the default settings, SPSS computes the variables’ mean values along

the lines of the break variable (indicated by the postfix _mean, which is added to

Table 9.16 Cluster centroids

Descriptive Statistics

CLU3_1 N Minimum Maximum Mean Std. Deviation

1 weight 7 929 1215 1115.57 100.528
speed 7 154 180 170.00 9.950
acceleration 7 11.40 15.10 12.9571 1.50317
Valid N (listwise) 7

2 weight 2 1340 1610 1475.00 190.919
speed 2 250 275 262.50 17.678
acceleration 2 5.40 5.80 5.6000 .28284
Valid N (listwise) 2

3 weight 6 1425 1660 1560.17 81.081
speed 6 201 250 223.67 21.163
acceleration 6 7.30 10.80 9.1167 1.48649
Valid N (listwise) 6
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each aggregate variable’s name), which corresponds to the cluster centers that we

need for the k-means analysis. You can change each aggregate variable’s name

from the original one by removing the postfix _mean – using the Name & Label

option – if you want to. Lastly, we do not want to add the aggregated variables to the

active dataset, but rather need to create a new dataset comprising only the aggregated

variables. Youmust therefore check this under Save and specify a dataset label such as

aggregate. When clicking on OK, a new dataset labeled aggregate is created and

opened automatically.

The new dataset is almost in the right format – but we still need to change the

break variable’s name from CLU3_1 to cluster_ (SPSS will issue a warning but this

can be safely ignored). The final dataset should have the form shown in Fig. 9.22.

Now let’s proceed by using k-means clustering. Make sure that you open the

original dataset and go to Analyze u Classify u K-Means Cluster, which brings up

a new dialog box (Fig. 9.23).

Fig. 9.21 Aggregate data dialog box
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As you did in the hierarchical clustering analysis, move the six clustering

variables to the Variables box and specify the case labels (variable name). To
use the cluster centers from our previous analysis, check the box Read initial and

click on Open dataset. You can now choose the dataset labeled aggregate.
Specify 3, which corresponds to the result of the hierarchical clustering analysis,

in the Number of Clusters box. The Iterate option is of less interest to us. Instead,

click on Save and check the box Cluster Membership. This creates a new variable

indicating each object’s final cluster membership. SPSS indicates whether each

observation is a member of cluster 1, 2, or 3. Under Options, you can request

several statistics and specify how missing values should be treated. Ensure that you

request the Initial cluster centers as well as the ANOVA table and that you

exclude the missing values listwise (default). Now start the analysis.

Fig. 9.22 Aggregated data file

Fig. 9.23 K-means cluster analysis dialog box
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The k-means procedure generates Tables 9.17 and 9.18, which show the initial

and final cluster centers. As you can see, these are identical (also compare

Fig. 9.22), which indicates that the initial partitioning of the objects in the first

step of the k-means procedure was retained during the analysis. This means that it

was not possible to reduce the overall within-cluster variation by re-assigning

objects to different clusters.

Likewise, the output Iteration History shows that there is no change in the

cluster centers. Similarly, if you compare the partitioning of objects into the three

clusters by examining the newly generated variable QCL_1, you see that there is no
change in the clusters’ composition. At first sight, this does not look like a very

exciting result, but this in fact signals that the initial clustering solution is stable.

Table 9.17 Initial cluster

centers
Initial Cluster Centers

Cluster
1 2 3

moment 117 347 282
width 1699 1808 1814
weight 1116 1475 1560
trunk 249 323 543
speed 170 263 224
acceleration 12.96 5.60 9.12

Input from FILE Subcommand

Table 9.18 Final

cluster centers
Final Cluster Centers

Cluster

1 2 3

moment 117 347 282
width 1699 1808 1814
weight 1116 1475 1560
trunk 249 323 543
speed 170 263 224
acceleration 12.96 5.60 9.12
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In other words, the fact that two different clustering methods yield the same

outcomes provides some evidence of the results’ stability.

In contrast to hierarchical clustering, the k-means outputs provide us with an

ANOVA of the cluster centers (Table 9.19). As you can see, all the clustering

variables’ means differ significantly across at least two of the three segments,

because the null hypothesis is rejected in every case (Sig. � 0.05).

Since we used the prior analysis results from hierarchical clustering as an input

for the k-means procedure, the problem of selecting the “correct” number of

segments is not problematic in this example. As discussed above, we could have

also used the VRC to make that decision. In the8Web Appendix (! Chap. 9), we
present a VRC application to this example.

9.4.4 Two-step Clustering

As a last step of the analysis, we conduct a two-step clustering approach. First, go to

Analyze u Classify u Two-Step Cluster. A new dialog box opens, similar to that

shown in Fig. 9.24. First, move the variables we used in the previous analyses to the

Continuous Variables box.

The Distance Measure box determines how the distance between two objects or

clusters is computed. While Log-likelihood can be used for categorical and contin-

uous variables, the Euclidean distance can only be applied when all of the variables

are continuous. Unless your dataset contains categorical variables (e.g., gender) you

should choose the Euclidean distance measure, as this generally provides better

results. If you use ordinal variables and therefore use the Log-likelihood procedure,

check that the answer categories are equidistant. In our dataset, all variables are

continuous, therefore select the second option, namely Euclidean.

Under Number of Clusters, you can specify a fixed number or a maximum

number of segments to retain from the data. One of two-step clustering’s major

Table 9.19 ANOVA output

ANOVA

Cluster Error

F Sig.Mean Square df Mean Square df

moment 64318.455 2 784.224 12 82.015 .000
width 23904.771 2 1966.183 12 12.158 .001
weight 339920.393 2 10829.712 12 31.388 .000
trunk 142764.143 2 4311.754 12 33.110 .000
speed 8628.283 2 262.153 12 32.913 .000
acceleration 50.855 2 2.057 12 24.722 .000
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advantages is that it allows the automatic selection of the number of clusters.

To make use of this advantage, you should specify a maximum number of clusters,

for example, 6. Next to this box, in which the number of clusters is specified, you

can choose between two criteria (also referred to as model selection or information

criteria) which SPSS can use to pick an appropriate number of segments. Select

Schwarz’s Bayesian Criterion (BIC) but – as discussed above – you should re-run

the analysis using AIC.

Under Options, you can specify issues related to outlier treatment, memory

allocation, and variable standardization. Variables that are already standardized

have to be assigned as such, but since this is not the case in our analysis, you can

simply proceed.

Lastly, under the optionOutput, we can specify additional variables for describing

the obtained clusters. However, let’s stick to the default option for now.Make sure that

you click the box Create cluster membership variable before clicking Continue.

SPSS produces a very simple output, as shown in Fig. 9.25. The upper part of the

output describes the algorithm applied, the number of variables used (labeled input

features) and the final number of clusters retained from the data. In our case, the

number of clusters is chosen according to BIC, which indicates a two-segment

solution (the same holds when using AIC instead of BIC). Note that this result

differs from our previous analysis where we used a three-cluster solution!

Fig. 9.24 Two-step cluster analysis dialog box
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The lower part of the output (Fig. 9.25) indicates the quality of the cluster

solution. The silhouette measure of cohesion and separation reaches a value of

more than 0.50, indicating a satisfactory cluster quality. Consequently, you can

proceed with the analysis by double-clicking on the output. This will open up the

model viewer (Fig. 9.26), an evaluation tool that graphically presents the structure

of the revealed clusters.

The model viewer provides us with two windows: The main view, which

initially shows a model summary (left-hand side), and an auxiliary view, which

initially features the cluster sizes (right-hand side). At the bottom of each window

(option: View), you can request different information on each of the clusters.

To further analyze the clusters, select Clusters in the main view and Predictor

Importance in the auxiliary view (Fig. 9.26).

In the main view, we can now see a description of the two clusters, including

their (relative) sizes. Furthermore, the output shows each clustering variables’ mean

values across the two clusters as well as their relative importance. Darker shades

(i.e., higher values in feature importance) denote the variable’s greater importance

for the clustering solution (in terms of predicting each observation’s cluster mem-

bership). Comparing the results, we can see that moment is the most important

variable for each of the clusters, followed by weight, speed, width, acceleration,
and trunk. Clicking on one of the boxes will show a graph with the frequency

distribution of each cluster.

The auxiliary view on the right-hand side shows an overview of the variables’

overall importance for predicting the clustering solution, which provides the same

result as the cluster-specific analysis. The model viewer provides us with additional

options for visualizing the results or comparing clustering solutions. It is

Algorithm TwoStep

6

2

Input Features

Clusters

Model Summary

Cluster Quality

–1.0 –0.5 0.0 0.5 1.0

Silhouette measure of cohesion and sepearation

Poor Fair Good

Fig. 9.25 Two-step clustering output
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worthwhile to simply play around with the different self-explanatory options. So go

ahead and explore the model viewer’s features yourself!

9.5 Shopping at Projekt 2 (Case Study)

Facing dramatically declining sales and decreased turnover, retailers such as H&M

and Zara are rethinking their pricing strategies, scaling back inventories, and

improving the fashion content. Men’s accessories are one of the bright spots and

Projekt 2, an apparel retailer, has jumped on the trend with three recently opened

shops prominently featuring this category. The largest men’s store opened in

Munich in 2011 and stocks top brands in jewelry, watches, sunglasses, and leather

goods. By providing a better showcase for men’s accessories, Projekt 2 aims at

strengthening its position in a market that is often neglected in the larger department

stores. This is because the men’s accessories business generally requires expertise

in buying since this typically involves small, artisan vendors – an investment many

department stores are not willing to make.

Projekt 2’s strategy seemed to be successful. However, before opening

accessories shops in any other existing stores, the company wanted to gain further

insights into their customers’ preferences. Consequently, a survey was conducted

Fig. 9.26 Additional options in the model viewer
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among visitors of the Munich store to gain a deeper understanding of their attitudes

to buying and shopping. Overall, 180 respondents were interviewed using mall-

intercept interviewing. The respondents were asked to indicate the importance of the

following factors when buying products and services using a 5-point scale (1¼ not at

all important, 5 ¼ very important):

– Saving time (x1),
– Getting bargains (x2),
– Getting products that aren’t on the high street (x3),
– Trying new things (x4), and
– Being aware of what companies have to offer (x5).

The resulting dataset projekt2.sav (8 Web Appendix ! Chap. 9) also includes
each respondent’s gender and monthly disposable income.

1. Given the levels of measurement, which clustering method would you prefer?

Carry out a cluster analysis using this procedure.

2. Interpret and profile the obtained clusters by examining cluster centroids.

Compare differences across clusters on observed variables using ANOVA and

post-hoc tests (see Chap. 6).

3. Use a different clustering method to test the stability of your results. If necessary,

omit or rescale certain variables.

4. Based on your evaluation of the dataset, make recommendations to the manage-

ment of Projekt 2’s Munich store.

Review Questions

1. In your own words, explain the objective and basic concept of cluster analysis.

2. What are the differences between hierarchical and partitioning methods? When

do we use hierarchical or partitioning methods?

3. Run the k-means analysis again from the example application (thaltegos.sav,
8 Web Appendix ! Chap. 9). Compute a three-segment solution and compare
the results with those obtained by the initial hierarchical clustering.

4. Run the k-means analysis again from the example application (thaltegos.sav,
8Web Appendix! Chap. 9). Use a factor analysis considering all nine variables
and perform a cluster analysis on the resulting factor scores (factor-cluster
segmentation). Interpret the results and compare these with the initial analysis.

5. Repeat the manual calculations of the hierarchical clustering procedure from the

beginning of the chapter, but use complete or average linkage as clustering

method. Compare the results with those of the single linkage method.

6. What clustering variables could be used to segment:

– The market for smartphones?

– The market for chocolate?

– The market for car insurances?
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Further Readings

Bottomley, P., & Nairn, A. (2004). Blinded by science: The managerial

consequences of inadequately validated cluster analysis solutions. International
Journal of Market Research 46(2):171–187

In this article, the authors investigate if managers could distinguish between
cluster analysis outputs derived from real-world and random data. They show that
some managers feel able to assign meaning to random data devoid of a meaningful
structure, and even feel confident formulating entire marketing strategies from
cluster analysis solutions generated from such data. As such, the authors provide
a reminder of the importance of validating clustering solutions with caution.
Everitt, B. S., Landau, S., & Leese, M. (2001). Cluster analysis, (4th edn). London:
Arnold.

This book is comprehensive yet relatively non-mathematical, focusing on the
practical aspects of cluster analysis. The authors discuss classical approaches as
well as more recent methods such as finite mixture modeling and neural networks.
Journal of Classification. New York, NY: Springer, available at:

http://www.springer.com/statistics/statisticalþtheoryþandþmethods/journal/357

If you are interested in the most recent advances in clustering techniques and
have a strong background in statistics, you should check out this journal. Among
the disciplines represented are statistics, psychology, biology, anthropology, archeo-
logy, astronomy, business, marketing, and linguistics.
Punj, G., & Stewart, D. W. (1983). Cluster analysis in marketing research: Review

and suggestions for application. Journal of Marketing Research 20(2):134–148
In this seminal article, the authors discuss several issues in applications of

cluster analysis and provide further theoretical discussion of the concepts and
rules of thumb that we included in this chapter.
Romesburg, C. (2004). Cluster analysis for researchers. Morrisville: Lulu Press.

Charles Romesburg nicely illustrates the most frequently used methods of
hierarchical cluster analysis for readers with limited backgrounds in mathematics
and statistics.
Wedel, M., & Kamakura, W. A. (2000). Market segmentation: Conceptual and
methodological foundations (2nd ed.). Boston: Kluwer Academic.

This book is a clear, readable, and interesting presentation of applied market
segmentation techniques. The authors explain the theoretical concepts of recent
analysis techniques and provide sample applications. Probably the most compre-
hensive text in the market.
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