
Advanced Methods for Determining the Number of Factors 

 
Horn’s (1965) Parallel Analysis (PA) is an adaptation of the Kaiser criterion, 

which uses information from random samples. The rationale underlying PA is that 
factors from real data with a valid underlying factor structure should have larger 
Eigenvalues than those derived from random data having the same sample size 
and number of variables. In the first step of PA, 1.000 datasets are randomly gen-
erated which have the same number of observations and number of variables as 
the original dataset. Factor analysis is then run on each of the 1.000 datasets, re-
sulting in 1.000 sets of Eigenvalues (each set includes as many Eigenvalues as 
there are variables in the original dataset). Next, the 95th percentile is calculated 
for the largest second largest, third largest etc. Eigenvalue in the set. Researchers 
can now plot the Eigenvalues from the original dataset and the 95th percentile Ei-
genvalues from the random data. As a consequence, researchers should retain only 
those factors whose Eigenvalues are greater than the Eigenvalues from the random 
data. 

Similar to the PA is the Broken-Stick (B-S) criterion which is also based on 
randomly generated Eigenvalues. The rationale underlying B-S can be best ex-
plained by the following metaphor: if a stick is randomly broken into p pieces 
(where p is the number of variables in the data set), b1 would represent the mean 
size of the largest piece in each set of broken sticks, b2 would represent the mean 
size of the second largest piece, and so forth. Accordingly, the B-S model assumes 
that if the total variance in the data is randomly divided among all factors, the ex-
pected distribution of the Eigenvalues will follow a B-S distribution. Therefore, 
researchers should always extract those factors from the dataset whose Eigenva-
lues exceed those generated by the B-S model.  

Velicer (1976) suggested the Minimum Average Partial (MAP) test, which is 
based on the average partial correlations between the variables after successively 
removing the effect of the factors. The factor with the highest Eigenvalue is re-
moved first and its effect on the correlations between the items is excluded. Next, 
the factor with the second highest Eigenvalue is excluded and so on. In each step, 
the (squared) average partial correlations between the items are computed which 
will initially decrease but, after several steps, will increase again. Researchers 
should retain the number of factors from the data, which minimizes the (squared) 
average partial correlations. 

You might ask yourself which of the procedures works best. Some studies sug-
gests that the PA and MAP approaches are the best when deciding on the number 
of factors as their results are accurate and show little variation (Zwick and Vellic-
er, 1986, Henson and Roberts 2006).  The Kaiser criterion is known to overesti-
mate the actual number of factors. Considering that many statistical packages, 
such as IBM SPSS Statistics, rely on the Kaiser criterion, you should use multiple 
procedures (classic as well as these more advanced techniques including PA and 
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MAP) to get an indication of the best number of factors. The final decision should 
- in line with factor analysis' exploratory character - always also consider whether 
the solution can be readily interpreted.  

Let's use these procedures on our soccer fan satisfaction data. Go to 
http://www.guide-market-research.com/chapters/chapter8.html and save the file 
Syntax number of factors.zip to your computer which includes the three syntax 
files Parallel Analysis.sps, Broken Stick.sps, and MAP Test.sps.    Next, go to ► 
File ► Open ► Syntax, go to the download folder and select Parallel Anal y-
sis.sps. This will open a window similar to Fig. A8.1 which shows the syntax of 
the Parallel Analysis procedure. 

 

 

Fig. A8.1 Syntax window for the Parallel Analysis 

 
Under compute Ncases = 195. (line 9), you need to specify the number of ob-

servations in the original dataset. Similarly, under compute Nvars = 7. (line 10), 
you need to specify the number of variables. As the numbers correspond to our 
original dataset soccer_fan_satisfaction.sav, we can simply leave the syntax as is. 
To run the syntax go to ► Run ► All which will produce an output similar to Fig. 
A8.2. 
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Fig. A8.2 Parallel Analysis output 

 
In the column labeled Prcntyle, we can see the 95th percentile for each of the 

factors. Note that the numbers are almost certainly going to look different in your 
analysis as their computation is based on a random process. We can now plot the 
percentile values against the original Eigenvalues from our factor analysis. Fig 
A8.3 shows such a plot using Excel. As we can see, for the first two factors, the 
Eigenvalues from the random data are clearly lower than those from the original 
data. For three factors, however, the picture is not as clear-cut. Comparing the 
numerical values, we learn that the 95th percentile Eigenvalue of the third factor 
from the random data (1.123) is slightly below the Eigenvalue of the third factor 
from the original data (1.135). Therefore, based on the Parallel Analysis results, 
we would opt for a three-factor solution. 
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Fig. A8.3 Parallel Analysis results  

 
Let's now run the B-S procedure by opening the corresponding syntax file 

(Broken Stick.sps). Taking a closer look at the syntax file, we can see that there are 
two figures which we need to adjust according to our dataset. In line 24 where it 
says SAMPLE 6 from 10000., we need to indicate one minus the number of va-
riables in our dataset (i.e., 7-1=6) as described in the comment just below. Similar-
ly, in line 68 (COMPUTE eigenvalue=percentage*7), we need to indicate the 
number of variables (this time, however, not minus one). Once you are done 
(again, in the case of our soccer fan satisfaction example, there are no adjustments 
necessary), click ► Run ► All. 

IBM SPSS Statistics will open an output window (Figure A8.4) which shows 
the Eigenvalues generated from the B-S analysis (the program also sets up a new 
.sav file, which contains the same information). Again, the numbers in your analy-
sis will likely look different because of the random nature of the approach. Ana-
logous to the Parallel analysis, you can now plot these Eigenvalues against those 
from the original analysis. Fig. A8.5 shows the corresponding results. 
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eigenvalue 
 Frequency Percent Valid Percent Cumulative Percent 

Valid .25 1 14.3 14.3 14.3 

.36 1 14.3 14.3 28.6 

.48 1 14.3 14.3 42.9 

.80 1 14.3 14.3 57.1 

.98 1 14.3 14.3 71.4 

1.13 1 14.3 14.3 85.7 

3.01 1 14.3 14.3 100.0 

Total 7 100.0 100.0  

Fig. A8.4 Results of the B-S analysis (I) 

 

 

Fig. A8.5 Results of the B-S analysis (II) 

 
Just like in the Parallel Analysis, the B-S results suggest a three-factor solution 

as for the Eigenvalues from the B-S distribution are lower than those from the 
original analysis for factors one, two, and three. 

Lastly, let's open the MAP Test.sps file in the syntax window. Just as before, 
we need to make some minor adjustments to the syntax. Specifically, in lines 8 
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and 9, we need to indicate the variables that we use in our factor analysis. In our 
case, we use the variables x1, x2, x3, x4, x5, x6, and x7. As these appear one after 
another in the original dataset, we can simply write x1 to x7. Now run the syntax 
by clicking on ► Run ► All. 

IBM SPSS Statistics will open the output window which shows the following 
result (Fig. A8.6). 

 

 
 

Fig. A8.6 MAP Test result 

Under Velicer 's Average Squared Cor relations, we can see the average par-
tial correlations after removing each of the factors. As indicated in the output, the 
minimum correlation of 0.137 is achieved for a three-factor solution. 

Taken jointly, the results of the three analyses all provide clear support for a 
three-factor solution. This is in accordance with the results from the classic ap-
proaches as discussed in the book in Chapter 8. Note, however, that this is not al-
ways the case, especially when a high number of variables is involved. When di-
vergences occur it is best to rely on PA or MAP test. 
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