
 

Two-Way ANOVA 

A logical extension of a one-way ANOVA is to add a second factor variable to the analysis. 
For example, we could assume that, in addition to the different promotion campaigns, the 
management also varied the type of service provided by offering either self-service or 
personal service (see column “Service type” in Table 6.1). A two-way ANOVA can test for 
differences when we have a second factor variable. In principle, a two-way ANOVA works 
like a one-way ANOVA, except that the inclusion of a second factor variable necessitates the 
consideration of additional types of variation. Specifically, we now have to account for two 
types of between-group variations: 

1. The between-group variation in factor variable 1 (i.e., promotion campaigns), and 

2. The between-group variation in factor variable 2 (i.e., service type). 

In its simplest form, the two-way ANOVA assumes that these factor variables are 
unrelated. However, in market research this is rarely the case, thereby requiring us to use the 
more complex case of related factors. When we take two related factors into account, we not 
only have to consider each factor variable’s direct effect (also called the main effect) on the 
dependent variable, but also the factor variables’ interaction effect. Conceptually, an 
interaction effect is the additional effect due to combining two (or more) factor variables. As 
we know from cocktail drinks, music, and paintings, there are many examples in everyday life 
where the whole is more than simply the sum of the parts. 

In our example, the free tasting stand might be the best promotion campaign when studied 
separately, but it could well be that, when combined with personal service, the point of sale 
display is much more effective. A significant interaction effect indicates that the combination 
of the two factor variables is particularly effective or, on the other hand, ineffective, 
depending on the direction of the interaction effect. Conversely, an insignificant interaction 
effect suggests that we should choose the best level of the two factor variables and then use 
them in combination.  

When running a two-way ANOVA, we have to examine the procedure’s formal 
assumptions, which are identical to those of its one-way counterpart. While most assumptions 
are easily testable, SPSS does not, unfortunately, provide us with an alternative test—such as 
Welch’s test—for situations in which we have to reject Levene’s test of the homogeneity of 
variance. If Levene’s test suggests unequal population variances, you can still interpret the 
analysis results (i.e., the different F-tests for the main and interaction effects), but it is better 
to assume a more stringent significance level, such as 0.01. Subsequently, you should 
consider the main and interaction effects, which are only significant if the p-values are smaller 
than 0.01 (instead of the commonly used threshold value of 0.05). 
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As discussed in Chapter 6 of the book, we need to consider various different types of 
variations when running a two-way ANOVA: (1) the total variation (SST), (2) the between-
group variation in factor variable 1 (i.e. promotion campaigns; SSB1), and (3) the between-
group variation in factor variable 2 (i.e. service type; SSB2), (4) the variation due to the 
interaction of factor variables 1 and 2 (SSB1x2), and (5) the within-group variation (SSW). 

Given these different types of variations, there are three null hypotheses that are of particular 
interest to us: 

1.) The factor-level means of the first factor variable are equal in the population, 

2.) The factor-level means of the second factor variable are equal in the population, and 

3.) There is no interaction effect between the two-factor variables.  

Note that in theory, we could test further hypotheses (e.g., the population means of the first 
or second factor variable are equal), which, however, have little practical use. Before testing 
any of these hypotheses, we have to make sure that the assumptions described above hold. 
That is, we have to test whether the data are normally distributed, and whether the population 
variances are equal. Furthermore, this step involves ensuring that the samples are independent 
and that the sample sizes are similar in each group. Once this is done, we can proceed by 
decomposing the total variation. As you will see, we are very fortunate that SPSS does this for 
us, since the numerous indices can be quite confusing. Nevertheless, it’s worthwhile taking a 
look at the formulas. You will see that the basic concept underlying the two-way ANOVA is 
essentially the same as with the one-way ANOVA.  

Let’s take a closer look at the different types of variation that need to be computed. We 
have already calculated the overall variation (SST=584), as well as the between-group 
variation for the first factor variable (SSB1=273.80), which means we still need to consider the 
following three types of variation: 

1.) The between-group variation in factor variable 2 (i.e., service type), computed by 
comparing each group’s mean sales 𝑥! (i.e., the sales means of the personal and self-
service) with the overall mean x, weighted by nl, the number of observations in the 
group (i.e., 15 in both groups). Overall, there are m factor levels (groups) in factor 
variable 2. For the comparison, we first need to calculate the mean values of the two 
service types, personal service (𝑥!  = 49.27) and self-service (𝑥!  = 46.73). We can 
therefore compute the following: 

𝑆𝑆!! =  𝑛! 𝑥! − 𝑥 !!
!!! =

15 ⋅ 50− 49.27 ! +⋯+ 47− 49.27 ! +   15 ⋅ 45− 46.73 ! +⋯+
44− 46.73 ! = 48.13  

2.) To calculate the variation due to the interaction between the two factor variables, we 
need to consider yet another mean value jlx , which describes the mean sales in each 

of the six factor-level combinations (i.e., the mean sales of the personal service 
combined with the point of sale display (𝑥!!  = 48) all the way through the mean sales 



of the self-service combined with in-store announcements (𝑥!!  = 48.30)). njl 
describes the number of observations in each of the factor level combinations, which, 
in our example, is always 5.  

𝑆𝑆!!!! =  n!" ⋅  x!" − x!  −  x! + x     =!
!!!

!
!!!  5 ⋅ 48− 47.3− 49.27+ 48 +

5 ⋅ 46.60− 47.3− 46.73+ 48 +  5 ⋅ 54.20− 52− 49.27+ 48  +  5 ⋅
49.80− 52− 46.73+ 48 +  5 ⋅ 45.60− 44.7− 49.27+ 48  + 5 ⋅ 43.80−
44.7− 46.73+ 48 = 13.27 

3.) The within-group variation SSW. Since we have a second factor variable in our model, 
the overall within-group variation changes compared to that of the one-way ANOVA. 
Specifically, it is computed as follows: 

𝑆𝑆! = (𝑥!"# − 𝑥!" )!!
!!!

!
!!!

!
!!! =  (50− 48)! + (52− 48)!  +⋯+ (47−

43.80)! + (42− 43.80)! = 248.80   

As in the one-way ANOVA, we convert these estimates into mean squares by dividing 
each by its degrees of freedom, which yields the following:  

– Mean square between-group variation factor variable 1 (promotion campaign): 

 𝑀𝑆!! =
!!!!
!!!

= !"#.!"
!!!

= 136.90 

– Mean square between-group variation factor variable 2 (service type): 

 𝑀𝑆!! =
!!!!
!!!

= !".!"
!!!

= 48.13  

– Mean square interaction effect:
 
 𝑀𝑆!!!! =

!!!!!!
!!! ⋅(!!!)

= !".!"
!�!

= 6.63 

– Mean square within-group variation: 𝑀𝑆! = !!!
!!!⋅!

= !"#.!"
!"!!

= 10.37 

We can now use these estimates to test the different effects described above. As in a one-
way ANOVA, we divide the mean square values to test the desired effects: To test whether 
the main effect of factor variable 1 is significant, we calculate  

𝐹 = !"!!
!"!

= !"#.!"
!".!"

= 13.21, which follows an F-distribution with (k-1) and (n-k·m) degrees 

of freedom (i.e. 2 and 24 in our example). Since the resulting critical value of 3.40 (for a 
significance level of 5%) is clearly smaller than the test value of 13.21, we can reject the null 
hypothesis and conclude that the promotion campaign factor exerts a significant influence on 
sales. 

For the second factor variable, we obtain  

𝐹 = !"!!
!"!

= !".!"
!".!"

= 4.64, which also follows an F-distribution, but with (m-1) and (n-k·m) 

degrees of freedom. As in the case of factor variable 1, the critical value (4.26 for α=0.05) is 
smaller than the test statistic, providing support for this type of service also having a 
significant bearing on sales.  



Finally, we test the interaction effect by computing the following test statistic: 

𝐹 = !"!!!!
!"!

= !.!"
!".!"

= 0.64, which follows an F-distribution, but with (k-1)·(m-1) and (n-

k·m) degrees of freedom. Whereas the two main effects of factors 1 and 2 were significant, 
this is clearly not the case with the interaction effect. The test value (0.64) lies far below the 
critical value (3.40 for α=0.05).  

Fig. A6.1 plots the results. The shape of the lines shows that, regardless of the type of 
service, the sales in both cases are highest for the free tasting stand, followed by the point of 
sale display, and, finally, by the in-store announcements. However, the factor variables only 
interact if the effect of one of the factors differs depending on the level of the other factor 
variable. The fact that the lines are almost parallel across the three levels of factor variable 1 
shows that there is no interaction between the two factor variables. If this were the case, there 
would be clear differences in the lines’ slopes (e.g., one line having a clear negative slope and 
the other having a clear positive slope).  
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Fig. A6.1 Visual inspection of interaction effects 

	


